
Theoret. Chim. Acta (Berl.) 58, 1-8 (1980) 
THEORETICA CHIMICA ACTA 

�9 by Springer-Verlag 1980 

Original Investigations 

Approximate Energy Expression in the Calculation of 
Photoelectron Transition Energies 

B. T. Pickup 

Department of Chemistry, The University, Sheffield $3 7HF, England 

D. W. Sabo 

The University of British Columbia, Chemistry Department, 2036 Main Mall, University Campus, 
Vancouver, British Columbia Canada V6T 1Y6 

The possibilities of using approximate self-consistent field energy functionals 
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1. Introduction 

In quantum chemistry, the calculation of energies of atomic or molecular systems 
invariably involves the evaluation, either directly or indirectly, of the energy 
expectation value (Ritz ratio), 

<~'I ~I~'> <i) 
E ( ~ )  < ~ l ~  ) . 

Here  ~o is the hamiltonian operator  for the system. It is well known that when the 
wavefunction ~ is an eigenfunction of W, small variations in �9 affect the value of 
E ( ~ )  only in second order, that is, 

E(Xlt + 8~ )  = E ( $ )  + 0'(8~2). (2) 
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This implies that the calculated energy may be quite insensitive to small inac- 
curacies in ~F, as long as it is a reasonable approximation to the exact wavefunc- 
tion. 

In this note, we describe some useful consequences of this stability of E(~F) which 
can be exploited in the calculation of molecular excitation energies using self- 
consistent field (SCF) methods. In these methods, ~F is written as a single 
configuration function (that is, as a single determinant or as a linear combination 
of a small number of determinants with the linear expansion coefficients fixed by 
the spatial symmetry of the system). These determinantal functions are con- 
structed out of one-electron functions (spin-orbitals) which are chosen to make 
E(q~), Eq. (1), stationary with respect to any parameters appearing in the 
specification of the orbitals. The most commonly adopted parametrization is the 
LCAO (linear combination of atomic orbitals), which involves the expansion of 
the spatial parts, Sp(r), of the orbitals in terms of a set of atomic orbitals, xq(r), 
defined on fixed centers, 

qgp(r)= ~ xq(r)Tqp. (3) 
q=l  

The optimization of the energy E(',F) with respect to the parameters {Tqp} is 
typically carried out by converting the resulting stationary conditions into a 
pseudo-eigenvalue equation, which is solved iteratively [1]. This iterative deter- 
mination of the SCF wavefunction itself accounts for most of the cost of these 
calculations, once the initial basis function integral generation has been done. 

One way of reducing the computation involved in determining a series of energy 
levels for a particular system is to calculate sets of spin-orbitals which are good 
approximations to the optimum orbitals for more than one state. This would 
involve optimizing an energy functional constructed as a combination of energy 
functionals for two or more states. However it must be remembered that, in SCF 
theory, these orbitals are used in part to describe a time-averaged electronic field, 
and thus, this procedure can only be expected to work if the various states 
involved do not correspond to very different self-consistent fields. Once these 
optimal "average" spin-orbitals are obtained, they can be  used to calculate the 
energies of each of the states involved using the true energy functions. 

The most general SCF energy functional depending only on one-particle densities 
can be written [2], 

E = Y, ve tr Reh~d(R) (4a) 
P 

with 

h~a(R) = h + 12~ [aeoJ(Ro) + beoK(Ro)].  (4b) 
O 

In these expressions, the quantities {re}, {aeo}, and {beo}, are numerical constants 
which are determined by the electronic occupations and spin coupling schemes. 
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The single particle density matrices, {Rp}, are given in terms of the LCAO 
coefficients, Eq. (3), by 

Rp : E T~T*p. 
peP 

The matrix h is the nuclear framework hamiltonian, and J(R) and K(R) are the 
usual coulomb and exchange interaction matrices (see [1], page 114). The 
summations in Eqs. (4a, b) run over all non-empty shells of the system. We now 
consider two types of averages based on functionals of the form (4a, b). 

2. Full Configurational Average 

The energy functional to be optimized in this case consists of a weighted average 
of the functionals corresponding to all the distinct spin couplings for a given shell 
occupation scheme ([3], [4]). Denoting the number of electrons in shell P by np, 
and the number of spin orbitals in shell P by rnp, the constants in Eqs. (4a, b) are 
given simply as, 

1}p -'~ n p /  mp~ 

app = v~- = 2(ne - 1)/(2rnp - 1), 
(6) 

apo = vo, (Q ~ P),  

1 (all P, Q). b p o  = - -~apo,  

To illustrate the correspondence between exact pure-spin SCF results and results 
obtained using this configurational averaging scheme, a series of calculations were 
carried out on a selection of doubly ionized states of the H20 molecule, in which 
two electrons have been removed from different orbitals 1. When both singly 
occupied orbitals, r and &b, are considered to be in the same shell, a total of four 
distinct pure-spin states are involved in this configurational averaging scheme. 
There is an open shell spin singlet, an open shell spin triplet, and two closed shell 
spin singlets corresponding to one of &a or r being doubly occupied and the other 
empty. Denoting the exact spin-adapted energies of these four states by 1E~ 
3 E  os ,  c s  E~ , E cs, respectively, the functional, E CA, to be optimized is 

E C A = I ( 1 E O S  + 3 o s  , ~ c s  3 E -~tza +ECS) .  (7) 

The results of the calculations are given in Table I for a series of states in which the 
canonical energies of the two orbitals from which electrons have been removed 
varies. The discrepancy between the spin-resolved configurational averaged 
results and the pure spin SCF results are seen to be generally very small indeed 
(<0.01%) except when &~ and &b are of drastically differing energies. The largest 
discrepancies occur for the 1B* 1A* state. This is due to the fact that the true 
self-consistent field after removal of two electrons from valence orbitals is very 

1 A double zeta basis set was used. The exponents for the ls  orbitals on the hydrogen atoms used 
were 1.33 and 2.47. Those for the oxygen atom were taken from Huzinaga STO (4s, 2p) [5]. The 
geometry used was ROll = 1.8111 a.u., 0HOH = 104027 ' (see [6]). 
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Table 1. Pure-spin SCF vs. spin-resolved configurationally averaged SCF. Total 
electronic energies (in a.u.) for a selection of double ion states of H20 

Resolved 
Spin configurational 

State mult. Pure spin averaged Error 

1B*13A~ 3 -83.7833 -83.7808 0.0025 
1B~3A~ 1 -83.6790 -83.6780 0.0010 
1B** 1 -83.7002 -83.6992 0.0010 
3A1"* 1 -83.5653 -83.5603 0.0050 

1B~IB~ 3 -83.6135 -83.6132 0.0003 
1B* 1B2" 1 - 83.5427 - 83.5412 0.0015 
1B** 1 - 83.7002 - 83.6980 0.0022 
1B** 1 -83.2812 -83.2784 0.0028 

1B*2A* 3 -83.0240 -83.0230 0.0010 
1B*2A* 1 -82.7305 -82.7333 -0.0028 
1B** 1 -83.7002 -83.6964 0.0038 
2A** 1 -81.9379 -81.9379 0.0000 

1B*IA~ 3 -64.3089 -64.3041 0.0048 
1B~* 1A~' 1 -64.1962 -64.1700 0.0262 
1B** 1 -83.7002 -83.4893 0.2109 
1A~* 1 -42.0982 -41.9053 0.1929 

3A~IB~ 3 -83.5673 -83.5652 0.0021 
3A* 1B* 1 - 83.4772 - 83.4746 0.0026 
3A1"* 1 -83.5653 -83.5583 -0.0030 
1B** 1 -83.2812 -83.2784 0.0028 

di f ferent  f rom the  field a p p r o p r i a t e  to the  case when  two e lec t rons  are  r e m o v e d  
f rom core  orbi ta ls .  I ndeed ,  it is surpr is ing  tha t  a single set  of o rb i ta l s  can desc r ibe  

two such di f ferent  s ta tes  as the  1B** and  1A** as wel l  as they  do.  N o t e  again  tha t  
in the  co lumn labe l l ed  " P u r e  Spin S C F "  in Tab le  1, eve ry  en t ry  r e q u i r e d  a 
c o m p l e t e  o rb i t a l  op t imiza t ion ,  whe reas  only  a single o rb i t a l  op t imiza t i on  
( fol lowed by  the  eva lua t ion  of each  of the  func t iona ls  in Eq.  (7)) was r e q u i r e d  for  
each  g roup  of four  en t r ies  in the  co lumn l abe l l ed  " R e s o l v e d  Conf igura t iona l  
A v e r a g e " .  

3. Transition Operator Methods 

In t rans i t ion  o p e r a t o r  m e t h o d s  ([7], [8], [2]), one  seeks  op t ima l  e s t ima tes  for  
t rans i t ion  energ ies  by  m a k i n g  s t a t iona ry  an ene rgy  func t iona l  which is a c o m b i n a -  
t ion of two func t iona ls  of the  fo rm (4a, b). Wr i t i ng  

u l ~ U l k a d ( u ) [ l l ~ U ' ~  E .  = ~ ve  tr *.P..e t*- ,, (8) 
P 

where  u = A ,  B, deno t e s  the  two func t iona ls  involved ,  a l inear  t rans i t ion  
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functional can be written as [8], 

E'in(A)=(�89189 -�89 <--�89 (9) 

The two functionals, EA and EB, may represent systems differing in spin- 
symmetry type, shell occupation schemes, and even total numbers of electrons. 
These two individual functionals may represent pure spin and spatial symmetry 
states or they may be averages of some sort themselves. For Eq. (9) to be useable, 
only the total number of shells must be defined to be the same for the two systems. 

A more subtle type of transition functional can be formed by interpolating the 
numerical constants {ue}, {aeQ}, and {beo}, occurring in the functionals EA and En. 
If EA and EB are configurational averages of the type described above, this is 
equivalent to interpolating the electronic occupations of the individual shells (see 
[2]). The resulting functional to be optimized is then a non-linear function of A. In 
both the linear and non-linear interpolation cases mentioned here, use of A = 0 
leads to the optimal transition energy functional. The utility of transition operator 
methods when EA and EB are pure-spin energy functionals has already been 
demonstrated in a number of studies ([2], [8]). Instead, we consider here the 
situation in which EA is the exact ground state energy functional for H20, and EB 
is a configurationally averaged energy functional of the type described above. In 
Table 2 are listed calculated energies of ionization relative to the ground state for 
the same doubly ionized states as in Table 1. Results are given for pure-spin AEscF 
calculations, AEscF calculations using resolved configurationally averaged energy 
levels (as described in the previous section above), and transition functional 
calculations using both the linear interpolation scheme, Eq. (9), and the non- 
linear interpolation scheme described immediately above. 

It is clear from these results that the additional level of approximation due to the 
interpolation of configurationally averaged energy functionals has had a 
significant effect on the accuracy of the calculated transition energies relative to 
the exact AEscF results. Whereas the AESCF results using resolved configuration- 
ally averaged transition energies are generally in error by significantly less than 
0.1% (and perhaps more importantly, by less than 0.1 eV), the transition 
functional results exhibit errors five to ten (and more) times this size. Comparison 
with numerical results described in [2] seems to indicate that it is the energy 
functional interpolation part that is responsible for most of the large error~ here, 
rather than the combination of configurational averaging and energy functional 
interpolation. It is just not possible for the same set of orbitals to give a good 
description of the self-consistent field corresponding to the ground state and that 
corresponding to a doubly ionized state. When errors in calculated transition 
energies begin to exceed 0.1 eV their usefulness in identifying features of photo- 
electron spectra becomes suspect. 

4. Conclusions 

The numerical results we have presented here illustrate both the potential 
usefulness and the limitations of SCF calculations involving approximate energy 
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functionals. In cases in which the approximate functional to be optimized does not 
correspond to a greatly different self-consistent field from that appropriate to the 
true energy functional, the optimal "approximate"  spin-orbitals obtained can give 
very good energies or transition energies when inserted in the true energy 
functionals. When an attempt is made to obtain a single set of orbitals applicable 
to systems which are too dissimilar, however, the usefulness of the i'esults can 
deteriorate. This is demonstrated clearly by the above transition operator  cal- 
culations, in which the approximate functionals optimized corresponded to 
systems differing by two electrons in ten, Results presented in [2] for transitions 
between the ground state and singly ionized states are much better, and thus it is 
likely that the transition functional methods would give more usable results here 
for transition energies between singly and doubly ionized systems. Such transition 
energies are required in the interpretation of Auger and related types of spectra. 

The subject of Auger spectra is particularly important because of the difficulties in 
assignment where there are many lines, and many possible interpretations. There 
are a number of works in the literature which use SCF and C1 calculations as an aid 
in assignment [9-11]. It is not the purpose of the present paper to discuss the 
Auger spectrum of water, but to make the following general comments. 

,~gren et al [9], and Hillier et al [10] have showed the effectiveness of a relatively 
limited "internal"  C1 on top of SCF excited state calculations. We believe that our 
present results suggest that the extra orbital optimization of the MCSCF results of 
[11] is unnecessary. Furthermore,  it seems probable that adequate assignments of 
Auger spectra can be made in the following manner. Firstly one carries out a 
configurationally averaged SCF for a group of states (such as 1B*3A* singlet and 

1B1 , 3A1 ). Then an internal C1 both "resolves the configuration triplet, ** ** 
terms", and accounts for strong interactions between terms from other configura- 
tions. The usual approach adopted for CI is to do a 4-index transformation to the 
MO basis, and then set the matrix elements. If a different C1 is required for each 
spin resolved SCF excited state this becomes very expensive. The use of 
configurationally averaged MOs reduces the number of 4-index transformations 
by a factor of four. Furthermore,  for such a small C1, especially with high 
symmetry, the C1 matrix may actually be constructed by scanning the AO integral 
files, using a generalisation [12] of the methods used to construct the Fock matrix. 
For very large basis sets (assuming the number of internal orbitals is small) this 
procedure is much cheaper than the standard one, since construction of the C1 
matrix is equivalent to four or five iterations of the SCF procedure. 
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